Control Systems Engineering
Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 1, Problem 3P

An aircraft's attitude varies in roll, pitch, and yaw as defined in Figure Pl .2. Draw a functional block diagram for a closed-loop system that stabilizes the roll as follows: The system measures the actual roll angle with agyro and compares the actual roll angle w ith the desired roll angle. The ailerons respond to the roll-angle error by undergoing an angular deflection. The aircraft responds to this angular deflection, producing a roll angle rate. Identify the input and output transducers, the controller, and the plant. Further, identify the nature of each signal. [Section 1.4: Introduction to a Case Study]

Chapter 1, Problem 3P, An aircraft's attitude varies in roll, pitch, and yaw as defined in Figure Pl .2. Draw a functional

FIGURE Pl.2 Aircraft attitude defined

Blurred answer
Students have asked these similar questions
5.Design a system to measure the bending moment (up and down) and torque in the tail boom of the human-powered aircraft shown below. You will need two Wheatstone bridges. Your system should measure the bending and torque independently, but not be sensitive to any other internal forces, like axial force, transverse shear, or bending moment about the vertical axis (back and forth). (If relevant) A clearly labeled diagram (or diagrams) about your analysis with a coordinate system and relevant labels. Final answer with appropriate units and significant figures. You can use the fprintf() command in MATLAB to format numerical results A 2-3 sentence reflection on your answer. Does it make sense? Why or why not? What are some implications? (a) Make a few clear, labeled sketches showing approximately where you would place the strain gauges. Consider the location (along the length of the boom), positioning (around the circumference of the boom), and orientation of the gauges. Show clearly…
2. A model for an airplane's pitch loop is shown below. Find the range of K that will keep the system stable. Can the system ever be unstable for positive values of K? Controller Aircraft dynamics Commanded pitch angle + K(s + 1) Pitch angle s + 10 s2 + 0.6s + 9 (s + 4.85) 1 Gyro
Task 1): The quarter-car model of a vehicle suspension and its free body diagram are shown in Figure 1. In this simplified model, the masses of the wheel, tire, and axle are neglected, and the mass m represents one-fourth of the vehicle mass. The spring constant k models the elasticity of both the tire and the suspension spring. The damping constant c models the shock absorber. The equilibrium position of m when y=0 is x=0. The road surface displacement y(t) can be derived from the road surface profile and the car's speed. a) Draw free body diagram (FBD) and derive the equation of motion of m with y(t) as the input, and obtain the transfer function. Body m 1 Suspension Road k Datum level Figure 1 Dynamic Analysis and Control If assume: m=250 kg k=10000, 30000, 50000 N/m c=1000, 2000, 3000 N.s/m b) Plot magnification ratio vs frequency ratio (r=0-4) diagrams for the parameters given above (you can draw the three curves in one diagram for three different k values and do the same for the…

Chapter 1 Solutions

Control Systems Engineering

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY