Hydro-machinery such as turbines and pumps represent fluid devices that have wide variety of configurations. Centrifugal pumps add energy to a fluid – by doing work on the fluid to move and increase the pressure. Figure 3 below shows the velocity diagram at the inlet and exit of a centrifugal pump im:peller pumping water at 6000 L/min and operating at 1750 rpm. The pump has a blade height, b, of 6cm with ri = 4cm and r2 = 16cm, with an exit blade angle B2 = 22°. Assume ideal flow conditions and that the tangentia! velocity component of the water entering the blade is zero. Analyze the pump in terms of tangential velocity component at the exit Vo2, the ideal head rise hi, and the power transferred to the fluid Wahafe

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
Hydro-machinery such as turbines and pumps represent fluid devices that have wide variety
of configurations. Centrifugal pumps add energy to a fluid – by doing work on the fluid to
move and increase the pressure. Figure 3 below shows the velocity diagram at the inlet and
exit of a centrifugal pump impeller pumping water at 6000 L/min and operating at 1750 rpm.
The pump has a blade height, b, of 6cm with ri = 4cm and r2 = 16cm, with an exit blade
angle B2 = 22°. Assume ideal flow conditions and that the tangentia! velocity component of
the water entering the blade is zero.
Analyze the pump in terms of tangential velocity component at the exit Ve2, the ideal head
W shaft
rise hi, and the power transferred to the fluid
Jaz
V
Figure 3
Transcribed Image Text:Hydro-machinery such as turbines and pumps represent fluid devices that have wide variety of configurations. Centrifugal pumps add energy to a fluid – by doing work on the fluid to move and increase the pressure. Figure 3 below shows the velocity diagram at the inlet and exit of a centrifugal pump impeller pumping water at 6000 L/min and operating at 1750 rpm. The pump has a blade height, b, of 6cm with ri = 4cm and r2 = 16cm, with an exit blade angle B2 = 22°. Assume ideal flow conditions and that the tangentia! velocity component of the water entering the blade is zero. Analyze the pump in terms of tangential velocity component at the exit Ve2, the ideal head W shaft rise hi, and the power transferred to the fluid Jaz V Figure 3
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Applied Fluid Mechanics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY